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CONTRIBUTIONS TO RADAR TRACKING ERRORS FOR A TWO-POINT
TARGET CAUSED BY GEOMETRIC APPROXIMATIONS

1. INTRODUCTION

In tracking an extended radar target, an accurate measurement of the target's position is
essential. A target is extended [1, p.1] if "its size is sufficient to cause glint errors which exceed
the other errors of the system." However the composite signal at the receiver induced by the
scattering elements comprising such targets can cause substantial measurement errors of position
[1,2,3]. Therefore accurate characterizations of the measured (apparent) range and angular errors
of extended targets are important. In Ref. I [Ch. 1], these errors are quantified for a two-point
target, but an error is introduced by approximating the range to the centroid of the two-point
target. Since the accuracy of the characterization has practical significance for radar systems in
terms of observed glint errors, this issue is investigated for the ideal situation of a two-point target
in a two-dimensional gnometry to gain further insight into this problem. Fxa.ct expressions of the
range and angular errors and an alternate set of approximations to them are derived. Both sets
of approximations are compared to the exact errors. These errors depend on the phase (,s) of
the composite signal, on the differences between the distances from the radar to the two scattering
centers and the centroid of the target, and on the relative size of the amplitudes of the individual
scattered fields from each center (Et/1 2).

The alternate approximations are obtained first by expanding appropriate parts of the errors
in infinite series and then by truncating the series. The truncated series are polynomials in the
ratio of the distance separating the two scattering elements to the actual distance from a radar to
the centroid of the scatterers. The differences between the exact errors and the two distinct sets of
approximations to them are examined as a function of this ratio. Advantages and shortcomings of
each set of approximations are identified. The exact expression for the angular error is shown to
reduce both to the first-order approximation and to the expression of Ref. 1 [Ch. 1], when certain
approximations are made; ltowever, such is not the case for the transverse and radial range errors.

First the problem is defined, the geometry is specified, and exact expressions for the range
and angular errors are derived. This is followed by a discussion of the approximations to the errors
and by an analysis of the impact of the approximations relative to the exact expressions for two
examnies. Tn nartirtular. limits nf the ratios of the different range errors are analyzed in detail.
An X-band system (10 CMU) and a large aircraft, which is characterized by a separation of 50 m
between the scattering centers, are assumed in both examples. The examples represent an aircraft
that is in its landing approach or at a range of roughly 200 nmii.

2. DEFINITIONS

To have consistent terminology, the following definitions are extracted from Ref. I and sum-
marized. In keeping with the definition of an extended target, partition the target's surface bv
subdividing the associated volume with a fine, three-dimensional grid. When the radar observes
the target, each small surface element contributes to the total received signal. Those elements that
produce strong scatter are called spccular points [4]. Usually a target has many specular points. An
individual point contributtes randomly to the echo signal's amplitude and to the apparent position
of the extended target, which varies according to the relative motion between the physical target
and the radar. Consequently, "a specitlar point is not any particular geometric point on the surface
of the extended target;" rather it "represents a combination of scattering elements which return a

I

Manuscript approved 8 Augutst 1991



MOKOLE

Gaussian signal. Other specular points are similarly composed, and their signals are statistically
independent [5,6]."

"Hence, a mathematical model of the extended target must meet two requirements: (a) it
must take into account the physical processes which affect radar tracking of the target's extended
features, and (b) it must yield results which predict accurately the practical performance of the
traukaing radar. One such model, the n-point model [7], represents the target as the sum ol a
large number of random, independent specular points, filling the space occupied by the target."
An n-point target model consists of n specular points that can be either independent isotropically
reflecting point targets, independent complex reflecting objects, a combination of the two, or any
of the preceding where a statistic-al correlation exists between the scattering centers.

"The number of specular points used to represent the target...may be reduced to a small value
for practical purposes, and in some cases the two-point model is used" [2,8,9]. This analysis is
undertaken for a two-point target, but may have implications for a more complicated extended
t ur{rn+

3. EXACT CHARACTERIZATION OF RANGE AND ANGULAR ERRORS

Initially the bistatir case is treated from which the more prevalent, monostatir situation is
obtained as a special case. These geometries are depicted in Figs. 1 and 2. The formulation of
Ref. 10 is followed. In particular, the origin of the inertial frame is chosen to be the location of
the transmitter. In Fig. 1, P1 and P2 are the positions of the scattering centers at a given instant
of time, 0d is the mnirinnint of the li-n qegm-n~ t P. P whon iJr PO i the obsPrvationn point
(location of the receiver) of the scattered feld, Fo, and ?o2 are the position vectors from the origin
to points P1 and P?, respectively, and Yl and F2 are the vectors from P, to P, and P2 to P0,
respectively. For the sake of argument, assume the magnitudes of Yl and ?ol are respectively less
than the magnitudes of -f and -F2; that is- r- Cm, and r01 < rTO.

The scattered electric field at P,, due to the ith specular point has the form Ei cosjw(t - ti)+ 3i]
for i E {1,2}, where w is the angular carrier frequency, 6i is the phase induced by the ith scatterer, tj
is the time delay at P0 over the path from 0 to Pi to P,, and Ei is the amplitude of the ith scattering
center and is pronortional to the square root of its effective radar cross-section. This internretation
of bi agrees with that of Ref. 11 [Eq. (71)]. Under the assumption that the polarizations from Pi
and P2 are identical, the composite signal received at point P, and time t is

ecf'L) e=(t) + e2(t) = h cosfw(t - t, -4- 24- En cosfwfl - tq -I = E'zcos(wt - i4,) ( 1)

for the individual fields el and e2. The composite phase and amplitude are -As and Es, which after
some algebra can be written as

Es J' VE1 + E2 + 2E E£2 cos(bi - b2 + 4'), for E£ # (2(a))
E 2E |1 + cos(6i - 62 +4A)], for El - 2, and

A's f? + 4, (2(b))

where

2
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V) = W(t2 - t1),

13 ̀ W(t2 + tjl/2,
tj (ri + roi)/c,

tan ID = c (1 )+ 2O t2 o)

( )

(3(a))

(3(b))

(3(c))

for EL $ £2

(3(d))

for El = E2,

and c is the speed of light in free space.
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The expressions foT Eq.(2) are obtained by substituting the identities, 61 - w 11 = - - /2
and &2-wt-2 = 6:2 -1+±/2, into Eq.(1) and simplifying the resulting equations. Clearly 4s depends
on w, ri, r2, rol, r 2,, 61¼ and 62. To simplify subsequent equations, the following definitions of
real-valued scalars are used

_a T + r2 = 2 Ar=r2 -r1 , ASr .= r 0 1, D=r+brO. (4)

Rewriting / and 4' in this nomenclature leads to

/3 = r-(a + raO3 and 4' = (r+ +r). (5)
C C

As a result of various errors, the location of the target measured by a tracking radar is not
necessarily any of the points PI, P2, or 0. Let the location of the measured centroid be denoted
PAC, with associated vectors Pm and Pmj and magnitudes Pm and Pino from PAC to P, and 0 to
PAC, respectively (Fig. 1). According to propagation theory [12, pp. 224-2271 and experimental
measurements [3], the apparent center PAC is determined from the phase 4's of the composite
signal; that is, the direction of Pm is the direction of the gradient of ?Ps evaluated at P4, while its
magnitude is specified by

Pm = -- 1

whee +he1.ti~ pat hal 'eiyact v is the, gru 10.l del1JJ/bII 4yCJ,. I.&A. t
4

JtOiJI .Lp£Js.Ln UIr she VV'J quttihtiO fare

now derived.
First observe that

O4S (JC'-raQ+ rae)±+!O for t i 2
9w l (ra. + rao) for E1 = E2.

WhIer L'i anu11 9i are cornsfarn for th1e ranlge o rqete ldrcts~rto. i q~i i*
V5V ii~ IL, U~t~ (/j O. ttI L'41 IU!cu ~i Ul~t '31 i rqcitnir:a UhhLttCI LuLkMUCIaL~II,'3f xl blf cXjUObAtJh OAAAt-

phifies to

ra oo DE2 E2
tims ( ± Er+E-$2EjE 2 cos(62 -6-)' for El $ (7)

I , ̂  for El E2.

Since this analysis takes place in the plane determined by the points 0, P1 , and P2 , the gradient
depends on two spatial, variables. A natural choice is the set of polar coordinates (r, V) relative to
the nv-coordinate framei, whose origin is located at o' with the positive u-axis perpendicular to
P1,P2 and the positive v-axis coinciding with OtP1 (Fig. 1). Therefore the gradient V4's evaluated
at P, is

V-Os P. = [ S XP 04 'I s. IV4'sI - jr in r+ ea, 8

where er and es are the polar unit vectors. Let (ro,9o) and (r4 9) represent the polar coordinates
of the points 0 and P, respectively, and let lo and ir be the associated position vectors from O'
with magnitudes ro and r.

4
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Before calculating Vos, the functional relationships between ra, rao, Sr, 6Sr0 and in, , rO, 0G
are determined. Assuming ri and r0o are greater than 1/2 and applying basic trigonometry leads to

rol = ro -TroI sin 0o + 12/4, (9(a))

r02 = giro + ro t sin Do ± i24, jUtjJU))

ri1 = n2 irn/sin 0+ 12/4, (9(c))

r2= i/
2 + rlSins ± 12/4, (9(d))

which express the distances r01, in0 2 , in1 , r 2 in termis of the polar variables r, 0, ro, 00. Substitute
these expressions into Eq. (4) to get

iaO = 4(vJF2 - rI Isin 0o ±l12 /, +±vr±A2 +r I sin t0 + 12 /4), (1f(a)t

7 = i( n
2

- Sin 0 + 12/4 + V/r2 + rl sin O + I1 /4) (10(b))

r +in rol sin 0o + 12/4 (10(c))
Sr = i,

2 ±r I is - + /24 - in
2 X-r sii 0n ;7 /2/4 (10(d))

Replace the appropriate quantities of Eq. (2(b)) by the preceding expressions to obtain

- (rn ± ran) + arctan { El sinl 6+ ( br±u+Sro) +E2sin 62-.-.2*}(r r+,o) , r
c E, cos 0 +2G(6r+6) + E2rco 52- - ( r+6 o J

r. = ± +p 0 ) + arcta 6-_ I -+(6r±&ro) ±cos 6-fJC r±Sro) for LO = £2.
C ~~~~~~~~COS vl+-2tL(6r+6r0) +COS for2 El = E2v

(ii)
As a brief aside, note that V's clearly depends on the carrier w, EI/E2, ri ± r2, and ri - r2. Now
taking the partial derivatives indicated in Eq. (8) and making some minor algebraic adjustments
yield

OEsl _ w f 2 + IsinO 2r - Isin 

r Po 4c | n2-r2 - in sin 0 + 12/4 VT2I i/ll 9I ± + 12/4

+ 2r + I sinS 0 r - IsinO /
inr 2 :+r :si:n + 2_rlsin 0 

r 2 r- 2

Ei- + E9- + 2 El E 2 cos [62 - - (6r + rO )W/c] (12(a))

I 08Ss I _ w f I~ICOSS I COS 0
P±/ lcos2 /24- -cos0 ± /2/4

+ s/4 V2 Il sin 0 12 2/4)

X ( + ± + cos0 2½-F r2 - + ) (12(b))
El' ± Ff 2+ 2Ei E2 cos [52 -SbI - (Sr + Sino)w/C]

5
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when E1 $6 E2. If El = E2, the expressions for the partial derivatives are obtained from Eqs.
(12(a)) and (12(b)) by omitting the product terms so that only the first two terms remain for each
partial.

The angular error between the measured (apparent) and actual locations of the target is the
angle from er to V0 5 in the counterclockwise direction. In the geometry of Fig. 1, 0 is an acute,
negative angle and

tanr = iES /#S. (13)

No standard definition of a formula to represent the range error currently exists. However two
natural candidates are the radial range error Re and the magnitude p of the vector error (r - 7
which are given by

Re-inPm = Ar-IPmI and p = IPI1 Pm[ (14)

A third choice is the range error projected along the actual direction

Ar = r - IProjection of -m onto 11 = ri - pm cos 1. (15)

It is clear from the geometry of Fig. I that relationships among these errors exist. If a fourth error
(AL = pm Siifn ), the error in the direction transverse to F, is defined, these relationships may be
quantified. In particular, Ar and AL are the orthogonal components of p. Since

p2 = (Airn) + (AL)2 = R + 4rpm sin2'(/2), (16)

p is clearly the largest error. Observe that

_for _ D E-l E2

R 4 2 2 E7+E'+2EIE 2 cos j 2 -6i-2w6r/c] f(1)
t r -To+.r2 forE1 = £2

is the only error independent of 4' and that p and IArn approach JR'4 in the limit as 4 approaches
zero,

In analyzing expressions for the errors, it is useful to introduce three new parameters,

7o=-X -, ZO =-a
TrO r E2

the first two of which are numbers between zero and one for this application. Although the equations
for the errors of the bistatic case can be reformulated in terms of Ao, y, and zo, the monostatic
case is treated instead because it has greater applicability to radar scenarios, not to mention that
the calculations are much less cumbersome. Results for monostatic tracking radars are obtained
by setting

=TOe ro, =0 , er=erc, eo=e60, Sr =Sro, 4'=o, -to, (19)

and the corresponding geometry (Fig. 2) is obtained by letting the point £0 coincide with u.

6
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Therefore in the monostatic case for zo $ 1, the expressions for +Ps and the various errors
become

t lry COS 0 | 6r 2r,, Z2 tan -in '1
2 = rI + 1 2zo c os [62w- c' -2br0c]()

l a- sin 0 6+ 6 (+ -2 sin 0 

x z 2 r b 2 /r '(z~)

Re = r-ra-ar-2 1-zO ,2 , (20(a))Ain in- cos + ± +S ±±2 cos- [62 -2 - wi/}
R,=r r-co ra +b - Jr (20(b))

O + I + 1 + cs2 61 -O [2w6r1-245l]

AL = sin - 'os ± Sr 1 6 I _ c, (20(d))

L zo2 T 1 + £a~0 'C6 [X- u - LWUI /C J

~s 2tia +artn. sin [Si + w~r/c] ± zo sin [52 -Erc i 1 2(
ac cos [ + win/cJ + 0 cos [522- -

while for in0 _1

tan4'- 7c 2- Jr-sin2 -) 1 , (21(a))

2 -in i 2

2L;r = i- srnc, (ZS 2 

Arin-ar ra cos 4', (21(c))
AL = ina sin 4', (21(d))

-2Wra 61 + 62

c 2

Clearly Eqs. (21) are directly obtainable from Eqs. (20) by letting zo be unity, however, one
would not arrive at Eqs. (21) if the argument of the cosine, t2 - 61 - 2wbi/c, is set equal to zero
before letting zin be zero. When calculating such limits, they must be taken in the proper order. In
this problem, the limit with respect to zo must be evaluated first. In fact, the double limit obtained
by letting 62 - 61 - 2w~r/c approach zero, followed by zo approaching one, does not even exist.

Even though it is assumed that rl < i 2 and ro
0

< r02 (hence 0, C E (7r/2, ir)) in the preceding
arguments and figures, the results thus far are true for all 9, 0o C [0, 27r).

4. APPROXIMATIONS TO THE EXACT EXPRESSIONS

The exact expressions of the errors given by Eqs.(20) depend on the parameter -y, which lies in
tLhC IPJJlt InILCel S C k L I). IIL PariJC UUILL Cal, anI IILI pi U d dIUCeL LC UIO IL VI XltM I a I, , rjUiVOaCllty 1Y

in the individual ranges ri and r 2. It is further assumed that y is smiall enough to guarantee the
convergence of the binomnial series representations of ri and r2 . Consequently,

2 2 73 t (q29 (Y
r = -_i cin -4c ro2 on Y; cnR2o.;orylll

L 2 8 16 ')'

= + o 7 S 2 7 + ( 24)T2 rI ±2 sill ± - Cos &- sill0 Cos2 ~4} (22(b))
f 2 8 16 

7
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which imply

br ~ ~ 3
-= y sin 9- - sin cos2 o + o(y 4), (23(a))
in S

n = cos2.9+O(-4 ), (23(b))

g r,- &{sinof 1 sinoCos (2o 0()}. (23(c))

The 0-notation means terms of that order and higher.
The preceding three expressions can be approximated by truncating the appropriate infinite

series. The least accurate approximations are obtained by eliminating all terms with 7 raised to a
power greater than or equal to one Or two, which are respectively called the zeroth- and first-order
approximations and are designated by zero and one subscripts. For example,

A -Y CosO A-
-1 2 z2 + I ± 2zo cos[52 -4- (2wy /c i (24(a))

si 2 + 1 + 2zo Cos [62 - S - (2wyr/c) sin 9]

Ar r F1 inr --Cos 1 1 + yT sin9 1z 0 (24(c))
9z-2 I 2zncosf&2 -4- (2wyirncsin9] 

AL, = rinsin 1 Isin9 1i Z-4 }- (24(d))
42 + I + 2zo cos [62 -61 - (2w-yr/c) sin 0]

Equations (24) are valid for zo $ 1. When z0 = 1, tan 1 and Rf1 are zero, Arl is r(l - cos ,
and AL1 is risin 01.

Analogous expressions for Eqs. (24) from Ref. I [Eqs. (1.11) and (1.14)] are given by

tan 4' ob - 2in Z2 ± I + 2z0 cos [(2w1/c) sin q] (25())

lsin q 1-4( b
= rb IsnqIZ2(25(b))

22 4 + 1 + 2z4 cos[(2wl/c)sin q]

* Lob -I cos q _2 1Zo ~ 2(3
A -+ 1 + 2zo cost(2wj/c) sing]

To account for the apparent sign errors in the formulae for 4' and ¢ of Ref. I [pp. 7,9], minus signs
are inserted following the equal signs in Eqs. (25). A similar sign difference is also found in Ref.
10 [p. 1822] in the equivalent expression denoted 4, on which the result of Ref. I is based.

First note that the parameter "ri" of Ref. I is an approximation to the actual range r. In
particular, it is rn, the average of ri and r2. To make comparisons between the Tesults of Ref.
1 and the exact and approximate expressions of this report, their "ir" has been replaced with rTa.
Consequently, the center of their moving coordinate axis is situated at 0Oj at a distance r" from
0 (Fig. 2).

Secondly, the directed angle q is measured from the line segment 0'0 to the perpendicular
bisector of P1 P2 on the 0-side of P1 P2. It is not clear from Refs,1 and 10 how q is defined. So the

8
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aforementioned definition is selected. For the geometry of Fig. 2, q is related to 9 by 0 + q = 7r. In
fact, the relationship between 0 and q for arbitrary configurations is given by

0, for 0 < ir < 7/2
0 + q = 7r , for wr/2 < l < 37r/2 (26)

27r, for 37r/2 < a < 27r.

The authors of Ref. 1 [pp. 4-12] never explicitly state what approximations are used for
in1 and r 2, but they apparently follow the work of Ref. 10, which employs the approximations
- (1/2)sin andr +/2)sinq, respectively. The geoametricnl signifiHrnce of this appronimation
can be understood by consulting Fig. 2 and observing that 11 = (1/2) sin q is the distance of PI

and P2 from the line through 0' perpendicular to k. Hence ri and r 2 are approximated by their
projections onto the line through 0 and °Ob. Although it cannot be stated with absolute certainty,
it is likely that their approximation is related to the far-field assumption of parallel lines: the
two triads of line segments that connect PO to O', PI, P2 and 0 to the same three points are
approximately parallel. As a final comment, the selection of expressions to represent Ar~b and
AL0 b is disturbing because the choice is independent of 4'. According to the graphical depiction of
Ref. 1 [Fig. 1.3, p. 8], Arib and AL0 b are the radial and perpendicular components of the vector
error p. Thus they must depend on the angular error 4 in the same manner that Eqs. (20(c)),
(20(d)), (24(c)), and (24(d)) do, which is in opposition to the analytical definitions attributed to
them by Eqs. (25(b)) and (25(c)). Consequently, the respective differences among Ar, AL, p and
Airn0 , ALob, [(Ar0 6 ) 2 + (AL 0 j)2]l/2 will be examined more closely.

Because they are concerned with an accurate characterization of the range and angular errors,
the three approximations ("ir," rl, r 2) that Ref. 1 makes are important. In essence, they introduce
an intrinsic error at the outset to all subsequent equations. To ascertain the geometrical effect of
substituting ri for r, solve Eq.(10(b)) for r to obtain

f 72 - 12
in = ina ar 1 (27)

-4r-2 sin2 l

Clearly, r is a function of the target orientation (9) to the radar and the extent (1) of the target
relative to the average range (in0) of the two scatterers. Since the numerator of the radicand is less
than the denominator, r < rin. Hence, as indicated in Fig. 2, °Ob is farther away from 0 than O'.
More imnportantly, the radicand varies between 1 - (12)/(4ri) and 1 for any value of 0. Hence

the a J1p!oxiLYatILUI 01 r Uy ~ra is only as goud as the app)roXim)at:ion o i by v - t 1)/ In).
Substituting q = w - 0 into Eqs. (25) yields

Icos0 i_4
tan iOb 2r, 4 + 1 ±2z 0 cos 2wl/c) sin0 (28(a))

l Sinl0 ] -2
Ar06 - 2 O +- 1 + 2zo cos [(2wl/c) sin9]' (28(b))

A r I /11-Z 2A 6 i Cos 1-42 + I + 2zo cos [(2wl/c) sinG] (28(e)

Upon identifying r with in in Eqs. (28), Eq. (28(a)) is identical to Eq. (24(a)) when b2 - 61 = 0;
however,

COB(/)X{ At ?-(I1 - cos 01 ) } and 2sin{ALI -i sini 4} (29)
2 cos 4' ( U y n 2 sin ' 1

9
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rather than Arl aad AL1 agree with Ar0 b and AL0,b. In light of the preceding discussion, the
disagreements between Ar0 b and Arl and ALob and AL1 are not unexpected. In addition, Eq.
(24(a)) is equivalent to Ref. 3 [Eq. (3)] with the identification of r tan 9, b2 - s -+, 1, 0, and zo
to E, 4 + L sin '+, L, #, and a. Lastly, observe that the only effect of changing the range of 0 from
[r/2,37r/2) to t[,w/2) U [3r/2,2r) is to change the sign for each of Eqs. (28).

5. EXAMPLES

For very small -y, the first-order approximations are very good; however, these results may not
be accurate enough for all situations of interest. In addition, it is not clear analytically how good
the approximations of Ref. 1 are. Therefore a comparison between the exact and approximate
representations of the range and angular errors is now undertaken by considering two examples for
zo = 0.5 and for a carrier frequency of 10 GHz. To represent a large aircraft, the scattering centers
are separated by 50 m. Hence, for an aircraft that is landing or one that is 200 nmi from the radar,
the respective -ys are 0.05 and 0.00025. The examples are treated in that order.

Figures 3(a) through 3(c) indicate that the absolute value of the angular errors of Eqs. (20(a)),
(24(a)), and (28(a)) can get up to 0.07 rad (4t0G), which is not insignificant. In fact, the approxi-
mations are nearly equal since their difference lies in the interval [-0.00003,0.00003] rad (Fig. 3(b)).
The difference between job and 9 (hence between 41 and 0) fluctuates between -0.06 and 0.06 rad
(Fig. 3(c)). Since the differences, 4 - 40,b and 4 - 41' can be as large as the actual angular error,
neither approximation is good for all ranges of P.

In terms of the radial range error, Fig. 4(a) shows that IArn can be 150 m, which is three times
the separation between the scattering centers. Since the ratio jAr/Ar06j is often greater than I and
can be as large as 15 (Fig. 4(b)), I Ar05 I could be a mere 10 m, one-fifteenth the actual radial error.
Clearly Ar0 b is not a good measure of this error and is particularly bad near 9 equal o, ir, and 2w,
where the graph of IAr/Ar,,l appears to blow up. In contrast, Ar1 is a better approximation of
Ar (Pig. 4(c)) roughly by a factor of two for the entire range of 9; but in small intervals about ir/2
and 3ir/2, the approximation is excellent.

Figure 5 provides a comparison of the various transverse errors. The absolute value of the
actual transverse error can reach 65 m (Fig 5(a)), and IAL/ALost can be as high as 4 (Fig. 5(b)).
Therefore ALob is not a good estimate of this error. However AL1 is an even poorer approximation
of AL (Fig. 5(c)) since AL1 2ALob, except for $ near 0, r/2, 7v, 3r/2, and 2w, where ALI is a
very good estimate of AL.

Since IAr/Ar0 bI and IAL/AL 0 61 are as large as 15 and 4, respectively, and the maximum of
p is 150 m (Fig. 6(a)), one expects the maximum of p/t(Aro0,) 2 + (ALtb) 211/2 to have an upper
bound of 150/\/24 D± 9.66. This expectation is verified by Fig. 6(b), where the maximum value is
nearly 7. Therefore [(Aro) 2 + (AL 06)2]'/2 is a poor measure of p. Similarly, pi is a poor estimate
of p except for values of B centered about 0, r/2, iX, 37r/2, and 2r (Fig. 6(c)).

The preceding example demonstrates that the first-order approximations of Eqs.(24) and the
expressions of Ref. 1 can be poor representations of the angular, radial range, and transverse range
errors. In such instances, one should rely on the exact errors (Eqs4(2O)).

Comparisons of the errors for the second example (y = 0.00025) are displayed in Figs. 7
through 10. The range errors (AL, Ar, anad p) have essentially the same form and magnitude
as the preceding example, and the angular error 4 has the same form but is 200 times smaller.
However, the behavior of the approximations relative to the errors is significantly different; for
example, the symmetry about 0 = r may be absent (Figs. 7(c), 8(b), 9(b), 10(c)). In addition,
excursions of the first-order approximations from the actual errors are much smaller than those
of the first example, and the analytical relationships among the exact errors and both sets of
approximations are apparent for small values of -y. In particular, 4 c±b +1 t4, Ar ! Arl - 2Ar0 b,

10
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and AL - AL1 _ AL0 6/2; and Ar, AL, p, and 9 respectively lie in [-LLS m,150 ml, [-75 m,75 ml,
[0,150 m], and [-0.5 mrad,0.5 mrad] (see Figs. 7(a) through 10(a)).

Both approximations to the angular error 9 are excellent. Since 01 and Lob are indistinguishable
up to the twelfth decimal, only 9 - 0ob is sketched (Fig. 7(c)). This difference gets no larger than
3 x 10-7 rad. The first-order approximations of AL, Ar, and p are also very good except possibly
at 0 equal O, 7r, and 27r (Figs. 8(c), 9(c), 10(c)). In contrast, the transverse and radial errors of
Ref. 1 apparently converge to multiples of the actual errors except possibly near 0, 7r, and 27r (Figs.
8(b), 9(b)); while Ar6b + AL06 smoothly oscillates between one-half and twice the actual error
p (Fig. 10(b)).
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6. LIMITS OF THE RATIO OF THE RANGE ERRORS

To address the issue of whether the approximations converge to the transverse and radial
errors, analytical expressions for Ar/Arl, Ar/,Ab, AL/AL 1 , and AL/AL 05 are now considered
for 62 - 61 = 0. Evaluation of the limits of these quotients as -y approaches zero for fixed 0 is treated
first. Then the limits as 0 approaches 0, r, and 271 for fixed 'y are evaluated because the ratios
may be zero or may not exist. The behavior at these specific 0 for small y are then determined by
taking a second limit as -y approaches zero.

Equations (20), (23), (24), and (28) yield

AL si / 72 3
AL _ sin= i + cs2 0 + 0Y4) + sin 0-L7 sin Cos2 0 + 0(4)]
AL, sin1 ' 8 8

z2 $ I $ 2zo cos V{2wr/Cc)Q(y sing - 3 sin 0 cos2 0 + O(74))

± {i ±T silO i1z Z2( 30(a))
Ysn z4 + 1 + 2zo cos ((2wr7/t)sin] |

Art ; ( R W+007 )+ [T~~~~~~~sin- GI i~os004

s + 1 + 0 coS{ 2wr/c)(_Ysin - Y sin0cos2 0 + O(y4))J ) )

z.2 + I + -2zo cos [(2LT j J) (-y Sill 8 8sin v coS'2 9 + Ovy'J 

. {1 -eCos I + -si-- 0 (30(b))
Zo ± I + 2zo cos gw2wr-y c) sini 0

AL Sib l + cos2 + os(4) + 7f S{in Sin 5 111 0- + 0(,Y4)

___1_7 L iAos 

z5 + 1 + i2zQcoS t1 2wn/c) (y sinl - -.sin u cos2 tuvt J

+ {YcsiO +1 1-z 4 (,30(c))

2 +TI+2zocos [(2wr-x/c)Sin@j j

Ar _ lCos l+f cos2I0±+0(_Y4) + sin 0 -f3Sing cos29 + 0 (_4
Ar 0 ,b

Z4±1± +2zo cosV[2wrjc)Q(Isin09 - Singcos2 9±+0 )))

'Y sin i-2g f1 30(d))
2 + 2z 0 cos V(2w-r-y/c) sin 0]
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Observe that
lim 0, rim 4), =0, HUI tank 1 (31)
- Do MYo 0 tan 1;

and consequently

lim ± = urn sinm 1. (32)
-y-o ) 'y-.O sin )

From Eqs. (30(a)), (30(b)), (31), and (32), it follows that

AL Ar
lim = 1 and lim -= 1. (33)

'-Yo AL1 -y-o Ar1

To determine the limit of Eq. (30(d)), an interim approximation of Ar/Ar 0 b is now obtained.
For small a, cos 4 may be replaced by unity. In addition, all terms with -' raised to a power
exceeding one are eliminated. Thus, Eq. (30(d)) becomes

- - r- r+r7rsin -
Ar~b 42 + 1+ 2 zo cos I(2wryIc)(sin 0j}

| 7 rsins 1-Zo - lb (34)

t Zo~ +1I+ 2zocos [(2,,rr/c) sin0 (34)

from which
lim -r = 2. (35)
'y- 0 Arob

Next consider

AL sin ) z4 + 1 + 2zo cos [(2wry/c) sin 9]

AL, 5 7cos0 1 _ Z-2

X{(1 7 cos2 + O (_Y ) + 2 sin a sincos2a+O(9)]

X Cos 0 ,~ 1 Z02 )(36)

Zg + I + 2zo cos [(2wr-y/c) sin O]

The bracketed expression to the right of the first times sign goes to unity as -y - 0; so it remains
to ascertain the behavior of the term involving 0. In particular, for small -y (and hence small 4),
sin X is replaced by tan X, Eq. (20(a)) is applied, and the limit is evaluated to obtain

AL sin 0 Z2 + 1 + 2zo cos k(2wr'/c) sin 9] I
lim - =lim - .(37)
a-*O ALrb y-. ycos9 1-Z 2

The behavior of the quotients in Eqs. (30) for 9 equal to 0, 7r, and 27r are now determined by
evaluating the limits as 0 approaches these values and taking the resultant limits, if possible, as y
approaches zero.

For fixed a,

Ar 4~(2
1i In -A= 4(1z , (38)

80-Or,2rr Ar 1 + -1 (1-zo - 1
V 4 (1+za)

2
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for z0 i 1, which leads to

lirn li{rn Ar = (39)
am-+G -+Or,2w, ArT 1-zo/'

Clearly this expression has an infinite discontinuity at zo = 1. Thus as z0) approaches unity, the
limit of the absolute value of Ar/Ar 1 tends to positive infinity.

Letting zo = 0.5 in Eq. (39) yields 8 for the absolute value of this double limit. Upon inspection
of Figs. 4(c) and 8(c), one can see that the analytical and graphical results are in agreement for B

ual u, 1-, andl Zs{.

In comparison, the limits Of Ar/Ar~o as 0 approaches 0, r, and 2ir do not exist since

lin ArrO = 0 and lim A rf I -- (40)9a0,ir,27r + +r2, t Vu±48i -2J

but in the extended real numbers,

lim A- = ±0. (41)

This is exhibited in Figs. 4(b) and 8(b), where the curves have sharp jumps at 0 equal 0, xr, and 2X.
These jumps are similar to those of Figs. 4(c) and 8(c), except that in the present case, instead of
finite values for the functions at these 9, the functions are undefined and have vertical asymptotes.

The expressions for the ratios of the transverse errors are a bit simpler. More specifically,

4uim A = v = and lim -A = - t42)
&-0,-7r,2 AL, V 4 98-In v2ir AL0b 2 + £X

IT(1+7.

where Eqs. (42) are valid for all positive zo. Hence

limhI lim l =I and lim lim Al = -- (43)
-S~D i 0,ir,2?r AL 1 j A-o 9- 0*KI2r AL0 5 j 2

In general, as 'f decreases to zero, all errors become smoother, the first-order approximations
approach the actual errors, and Ar0 b and AL0 & approach Ar/2 and 2AL, respectively, except near
9 equal to 0, 7r, and 2X. Hence AKob is eventually an upper bound for AL so that the transverse
error is less than AL05 . On the other hand, Ar0 b is double the actual radial range error for very
small -y. Therefore Ar0 b and AL0 b are not good estimates Ar and AL for small a and U not near
0, ir, and 2X; however, the relationships among them are precisely known.

All of these analytically derived conclusions about the behavior of the two sets of approxima-
tions for small y can be seen in Figs. 7 through 10. The first-order approximation to the transverse
range error AL is excellent (Fig. 9(c), Eq. (33)), even for 0 near 0, 71, 2w (Eq. (43)). The radial
range error Arl closely approximates Ar (Fig. 8(c)) except near 0, X, 2w, where the ratio increases
to a finite, nonzero value in accordance with Eqs. (33) and (39). Lastly, the predicted relationships
(Eqs. (35), (37), (41), (42)) between the approximations of Ref. 1 and the exact range errors are
displayed in Figs. 8(b) and 9(b).

Generally it turns out that the first-order approximations of the range errors are excellent fors Et,0.000001 are good for y E (0.000001,0.00031, are fair for y E (0.0003,0.005], and are poor
for -y E (0.005, 1.0). Appropriate multiples of the range estimates of Ref. 1 behave similarly. Also
both approximations to the angular error are accurate for -1 smaller than 0.005.
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7. SUMMARY

Based on the assumption that the measured centroid of a two-point target is determined from
the phase Os of the composite signal of the individual returns, exact expressions for the angular,
transverse range, radial range, and vector errors have been derived. These errors depend on six
parameters: the transmission frequency (27rf = w); the range to the centroid of the two scatterers
(r); the difference between the phases induced by each scatterer (62-61); the ratio of the amplitudes
of the individual scatterers (zo); the angle between the line segment from the centroid to the radar
and the perpendicular bisector of the line segment connecting the scatterers (9); and the ratio of
the distance between the scatterers to the centroidal range (-).

Examples are analyzed for specific choices of f, zo, and 62 - 61 (10 GHz, 0.5, and 0 rad). Two
conclusions can be drawn from this analysis. First, the magnitude of the vector error-the distance
between the measured and actual target centroids-can be large even for small values of y. In one
example where y 0.00025, this error is three times the distance between the scatterers for some
target orientations, which means the measured target location could be off by three body lengths.
Consequently, the measured location can be well away from the actual target.

Second, approximate formulae for the angular and range errors, such as the far-field approxima-
tion to the geometry, should not be used in place of exact expressions without proper consideration
of the errors incurred by their use. It has been demonstrated that such approximations can diverge
substantially from the actual errors. In particular, the formulae of Ref. 1 may not be adequate
for representing the radial and transverse range errors when -y > 0.00025, since these estimates
of the errors are twice and one-half the real values, respectively, for small yf, while the first-order
approximations derived herein are inaccurate for y in excess of 0.005. Therefore when y > 0.005,
exact expressions or more accurate approximations for the errors must be used if one wishes to
get an accurate assessment of the range and angular errors. On the other hand, for y < 0.005,
the first-order approximations are valid. Even the radial and transverse range errors of Ref. 1
can be used, provided their relationships to the actual range errors are kept in mind. Although
a tl-ree-duInscrsiollal analysis both for two-point and N-point targets would be more realistic, this
two-dimensional analysis provides additional insight into the glint problem.

This analysis indicates that the glint phenomena may be caused in part by the inherent error
in the positional measurement. If this error is deemed significant and is attributable to a theoretical
formulation that resulted in the equations specifying position, then the theory should be revamped
to account for this. Even if the existing theory is correct, an explanation of this error should be
sought. The situation is complicated further by the introduction of an additional error through
approximations to the theoretical expressions for the position. Whether the combination of the
inherent and approximation-induced errors reduces or increases the measured positional error is
unclear. In terms of application to a radar system, errors of the magnitudes demonstrated herein
may be significant. For example, a 40 angular error for an incoming object could be very important.
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